Solution to Quiz 5a

Name: _____

1. (20 marks) Study the convergence of the series $\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n})$. Solution 1.

 As

$$s_n \equiv \sum_{j=1}^n (\sqrt{n+1} - \sqrt{n}) = \sqrt{n} - 1 \to \infty , \quad \to \infty ,$$

we conclude that this series diverges. Recall that $\sum_{n=1}^{\infty} x_n$ converges implies that $\lim_{n\to\infty} x_n = 0$.

Solution 2. We have

$$x_n \equiv \sqrt{n+1} - \sqrt{n}$$
$$= \frac{1}{\sqrt{n+1} + \sqrt{n}}$$
$$\geq \frac{1}{2\sqrt{n+1}}$$
$$\geq \frac{1}{2(n+1)}.$$

As $\sum_{n=1}^{\infty} \frac{1}{2(n+1)} = \infty$, by Comparison Test, $\sum_{n=1}^{\infty} x_n$ is divergent.

Remark. Many of you tried Ratio Test, but it is of no use. In many cases, Comparison Test is better. Remember it.